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these null results with silicon powder. It is clear from 
other measurements (e.g. electron microscopy) that 
powder grains are not prefect crystals, even if they 
happen to be spheres. 
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Abstract 

The crystallographic concepts of lattice and space 
group are extended to describe materials with crystal- 
lographically forbidden point groups, and a complete 
classification of all two-dimensional space groups 
with rotational order less than 23 is given. 

I. Introduction 

The complete classification of the symmetries of peri- 
odic crystals, carried out in the nineteenth century 
by Bravais, Fedorov, Schoenflies and others, is an 
essential tool for determining and describing the 
structures of materials with diffraction patterns con- 
sisting of Bragg peaks. The classification is organized 
by the 32 crystallographic point groups (ten in two 
dimensions), which specify the symmetry of the 
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macroscopic translationally invariant features of crys- 
ta ls -  crystal habit, responses to external perturba- 
tions etc. Within this classification the description of 
the 14 Bravais lattices and 230 space groups in three 
dimensions (five and 17 in two dimensions) relies 
heavily on periodicity, as specified by the real-space 
lattices which describe the microscopic translational 
symmetries of crystalline materials. 

Quasicrystalline materials have point groups which 
are incompatible with periodicity; their diffraction 
patterns consist of sharp well defined Bragg-like 
peaks, arranged with crystallographically forbidden 
point-group symmetries. The absence of periodicity 
precludes their description in terms of the standard 
classification system. We present here a reformulation 
of the concepts of space groups and lattices which, 
while reducing to the conventional scheme in the 
crystallographic case, is general enough to provide a 
classification of quasicrystalline materials by their 
lattices and space groups. This generalization is 
entirely based in reciprocal (wave-vector) space, 
where quasicrystals and crystals have the common 
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feature of a point diffraction pattern; rather than 
starting from real-space translational symmetry we 
work directly with relations between Fourier 
coefficients, which can be meaningfully formulated 
in both the crystalline and the quasicrystalline cases. 

The basis for this reformulation is that the set of 
wave vectors of a point diffraction pattern can be 
extended to a set which is closed under addition and 
subtraction; this set is simply the reciprocal lattice L. 
In the crystallographic case, L is dual to a lattice of 
real-space translations; as defined here, however, the 
reciprocal lattice has nothing to do with real-space 
periodicity. Nor is it necessary to view either the 
reciprocal lattice or the real-space structure itself as 
a lower-dimensional projection of a structure that is 
periodic in a higher dimension. The reciprocal lattice 
emerges as a natural construct for dealing with the 
fact that, except for systematic extinctions, a diffrac- 
tion pattern generally contains sums and differences 
of vectors in the pattern. (Most, of course, will have 
intensities too low to be observed.) 

Since the density has a non-zero Fourier com- 
ponent for each vector in the diffraction pattern, we 
will therefore be considering densities of the form 

p( r )=  Z p(k) e x p i k . r .  (1.1) 
k e L  

For a generic material we expect the Fourier 
coefficients p(k) to be non-zero for general reciprocal- 
lattice vectors k, though some may be required to 
vanish by symmetry. 

Within the conventional framework of point groups 
and real-space periodicity, a symmetry element con- 
tained in a crystallographic space group is a com- 
pound operation consisting of a point-group 
operation g followed by an associated translation tg 
which leaves the density unchanged: 

p(gr+tg)=p(r). (1.2) 

This implies that the Fourier coefficients of p are 
related by 

p(gk):p(k)exp(- igk . tg) .  (1.3) 

Starting with this relation, the problem of classifying 
ordinary crystal structures can be equally well posed 
in reciprocal space (Bienenstock & Ewald, 1962). 

In the case of a structure with a general noncrys- 
tallographic point group, there are no real-space 
translational symmetries, and we cannot assume 
a priori a phase relationship of the form (1.3). We 
begin instead with the entirely general relation 

p(gk)=p(k)exp[21ri~g(k)], (1.4) 

and determine the phase function ~g(k) by imposing 
the condition that any translationally invariant 
macroscopic property of the quasicrystal should be 
invariant under the operations of the point group. 
When the point group and reciprocal lattice are crys- 

tallographic, it is easy to show that the more general 
phase functions appearing in (1.4) necessarily reduce 
to the forms appearing in (1.3), so that solving for 
the allowed classes of phases functions ~g(k) gives 
back the familiar crystallographic space groups. 

In this paper we apply this general formulation to 
the particular case of two dimensions, considering 
arbitrary two-dimensional point groups. It is con- 
venient to represent a two-dimensional lattice as a 
set of complex numbers. For example, the set of all 
integral linear combination of the Nth roots of unity, 
the cyclotomic integers ZN, represents a lattice with 
N-fold symmetry. The sets Z4 and Z6 are just the 
familiar two-dimensional square and triangular nets. 
These two lattices are the only two-dimensional crys- 
tallographic lattices (to within a scale factor and 
rotation) with fourfold and sixfold symmetry. This 
happy coincidence between the cyclotomic integers 
of order N and the reciprocal lattices with N-fold 
symmetry is maintained for all N < 46; for higher N, 
however, lattices which are not equivalent to ZN may 
occur in addition to the 'standard' lattice ZN (Mer- 
min, Rokhsar & Wright, 1987). We limit ourselves 
here to classifying space groups for the standard 
lattice with arbitrary N, thereby arriving at a complete 
classification when the rotational order of the point 
group is less than 23. 

There is a body of earlier work on the question of 
generalizing space groups. Our approach is inspired 
by the work of Bienenstock & Ewald (1962), who 
were the first to formulate the problem of determining 
crystallographic space groups entirely in reciprocal 
space. Their solution, like ours, is based on construct- 
ing linear phase functions that satisfy compatibility 
conditions imposed by the point-group symmetry. 
Bienenstock & Ewald use the real-space translational 
symmetry of crystals only in establishing their initial 
formulation of the problem. From this perspective 
the point of our analysis in § 2 is to reach that stage 
without the assumption of translational symmetry. 

More recently the space-group problem has been 
formulated for quasicrystals using techniques initially 
developed to treat the classification of incommensu- 
rately modulated structures (Janner & Janssen, 1977). 
Alexander (1986), Janssen (1986a, b) and Bak (1985b, 
1986) have given descriptions of such approaches. 
These authors discuss quasicrystallographic space 
groups by viewing a general quasiperiodic density in 
physical space as a slice through a density in a higher- 
dimensional space; only certain crystallographic 
space groups in this hyperspace are consistent with 
the noncrystallographic symmetry in physical space. 

We caution the reader that although some aspects 
of quasicrystals are perhaps more transparent when 
considered in terms of these higher-dimensional 
spaces, such a treatment of space groups can be 
misleading. In particular, it is important to note that 
quasicrystallographic reciprocal lattices can have 
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scale invariances, which must be taken into account 
in the determination of their space groups. As a 
consequence of scale invariance, space groups which 
are distinct in higher dimensions can be physically 
indistinguishable. Our approach also differs from 
others in dealing systematically with the difficult 
problem of enumerating the lattices with noncrys- 
tallographic point-group symmetry. [This problem is 
addressed in detail in the first two papers in this series 
(Rokhsar, Mermin & Wright, 1987; Mermin, Rokhsar 
& Wright, 1987), the relevant results of which are 
summarized in § 3.] 

The paper is organized as follows: In § 2 we formu- 
late the relationship between the diffraction pattern 
and the reciprocal lattice, we briefly review the 
relationship between the point symmetry of a material 
and the point symmetry of its diffraction pattern, and 
we specify the restrictions placed upon the phases of 
p(k) by point-group symmetry. We then define gen- 
eralized space groups, and give the conditions under 
which point-group symmetry prohibits a vector in the 
lattice from appearing in the diffraction pattern. A 
distinction between quasicrystalline and incom- 
mensurate crystals is drawn, without which the 
classification problem is unmanageable. § 3 summar- 
izes the properties of two-dimensional lattices and 
introduces their representation as sets of complex 
numbers. We describe some important features of the 
scale invariance of two-dimensional lattices with non- 
crystallographic symmetry. § 4 begins with an outline 
of the major steps in the computation of the two- 
dimensional space groups for the standard lattice, 
then explicitly gives the details of this calculation. 
The results are summarized in the initial outline and 
in Table 3. In § 5 we describe, as an example, the 
simplest 'non-symmorphic '  non-crystallographic two- 
dimensional space group. 

The reader who wants to use these space groups 
(without deriving them) is encouraged to skip all of 
§ 4 except for the opening summary. 

2. Diffraction patterns and space-group symmetry 

A. Diffraction patterns and reciprocal lattices 

A diffraction pattern gives information about the 
magnitudes of Fourier coefficients of the density p of 
a material. We restrict ourselves to diffraction patterns 
with well defined Bragg-like peaks, and assume the 
specimen is macroscopically homogeneous-  i.e. the 
diffraction pattern is independent of the region of the 
specimen illuminated by the incident beam. Such 
complications as multiple scattering, anomalous dis- 
persion, peak widths etc. will be ignored. In view of 
these simplifications we can identify the symmetries 
of the diffraction pattern with the symmetries of the 
magnitudes of the Fourier coefficients of the density. 

Thus the diffraction pattern provides us with a set 
D of wave vectors at which the density has non- 

vanishing Fourier coefficients, together with a set of 
intensities which are measures of the magnitudes of 
those Fourier coefficients. It will be convenient to 
refer to the set of wave vectors D as 'the diffraction 
pattern', even though a full specification of the diffrac- 
tion pattern includes both the wave vectors and the 
associated intensities. 

One expects in general that if k~ and k2 are wave 
vectors appearing in the density, then p will also have 
Fourier components at k~ + k2, unless such wave vec- 
tors are forbidden by extinction rules determined by 
symmetry. The presence of such sums reflects the 
underlying nonlinearity of the mechanisms that deter- 
mine the equilibrium density of a material. We define 
the reciprocal lattice L [or, more fully, L(D)] deter- 
mined by the set of wave vectors D in the diffraction 
pattern to be the set of all integral linear combinations 
of wave vectors in the diffraction pattern. It is thus 
the smallest set of vectors which (1) is closed under 
addition and subtraction and (2) contains all wave 
vectors in the diffraction pattern. As so defined, the 
term retains its usual meaning in the crystallographic 
case. Whenever we use the term 'lattice' we shall 
always mean 'reciprocal lattice'; 'lattice' alone is 
unambiguous, since quasicrystals have no real-space 
lattices. 

Given a diffraction pattern, we infer that the density 
has a Fourier expansion 

p(r) : ~ p(k) exp ik.  r. (2.1) 
k~ L 

For a generic material we expect the Fourier 
coefficients in (2.1) to be non-zero, unless they are 
required to vanish by symmetry, as discussed in § 2.E. 

B. Point groups, Laue groups and holohedries 

The macroscopic symmetry of a mater ia l -  crystal 
or quasicrystal - is characterized by its point group G, 
the symmetry group of all macroscopic translationally 
invariant properties such as elasticity, conductivity 
etc. The point group G of the material is not in general 
directly determined by the diffraction pattern; there 
are, however, two larger groups which do characterize 
a diffraction pattern: 

(1) The point group GD of the diffraction pattern. 
Known as the Laue group, GD is the symmetry group 
of the magnitudes of the density Fourier coefficients: 
g is a symmetry operation in the Laue group GD if 
Ip(gk)] = Ip(k)l. Since the reality of p(r) gives p ( - k )  = 
p(k)*, the vectors k and - k  are related by a Laue- 
group operation even though the point group G need 
not contain the inversion. With each point group G 
is associated a unique smallest Laue group Go 
obtained by adjoining the inversion. Barring acciden- 
tal symmetry (as we shall), the observation of a Laue 
group Go implies that G is one of the point groups 
giving Go when the inversion is adjoined. 
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Table 1. Two-dimensional Laue groups Go and associ- 
ated point groups G 

The relation between Go and G depends on whether the rotational 
order n of the point group is even or odd. The two (isomorphic) 
point groups n m l  and n l m  reflect the fact that there are two 
distinct such subgroups of [2n]mm,  depending which half of the 
2n mirrorings the subgroup contains. (Here and in what follows, 
we use International notation to name point groups.) 

Laue group Point group 

n n 

rim/.~1 n m m  

n odd 2n n 

[2n]mm nml, him 

(2) The point group G£ of the associated lattice. 
In classical crystallography the point group of the 
real-space lattice is called the holohedral group of the 
lattice. This is, of course, identical to the point group 
of the corresponding (crystallographic) reciprocal lat- 
tice, so it is natural in the non-crystallographic case 
to refer to the point group Gt. of the lattice of wave 
vectors L(D) as the holohedral group. Since lattices 
are by definition closed under subtraction, if k is in 
the lattice so is - k ,  so holohedral groups necessarily 
contain the inversion. A holohedry is the set of lattices 
with a particular point group. 

Since any symmetry of the diffraction pattern is a 
symmetry of the (reciprocal) lattice it gives rise to, 
the Laue group Go of the diffraction pattern will be 
a subgroup of the holohedral group GL. Indeed, 
barring accidental vanishings of Fourier coefficients, 
GL will be just the symmetry group of the wave vectors 
in D without regard for their intensities. Note that 
because they contain the inversion, in two dimensions 
both GL and GD must contain a rotation by ~-, and 
therefore their rotational order N is necessarily even. 
If the rotational order n of the point group G is odd, 
the rotational order N of the associated Laue group 
Go (and holohedral group GL) is 2n. 

In two dimensions the catalogue of point groups 
and their associated Laue groups is quite simple; a 
complete list is given in Table 1. Note that when n 
is odd there is a pair of isomorphic point groups, 
nml  and n lm,  both consisting of n-fold rotations 
and n mirrorings perpendicular to the rotation axis. 
These must be viewed as separate cases because they 
correspond to the two distinct ways in which the point 
group nm can be a subgroup of the lattice group 
[2n]mm. In the familiar crystallographic cases, 3ml  
and 31m correspond to the two possible orientations 
of the point group 3 m relative to a sixfold symmetric 
reciprocal lattice m the mirror lines can either be 
along the shortest vectors or between them (Fig. 1). 
Crystallographically these cases can be distinguished, 
but we will see below that quasicrystallographically 
the two cases remain distinguishable only when n is 
a power of an odd prime, owing to the scale invari- 
ances of the corresponding reciprocal lattice. 

C. Point groups and phase relations 

Since the Laue group GD of the diffraction pattern 
is the symmetry group of the magnitudes of the Four- 
ier coefficients p(k), knowledge of the Laue group 
gives no phase information. Knowledge of the point 
group G of the material, however, provides restric- 
tions on the phases of the p(k). The determination 
of these symmetry-imposed phase relations (which in 
the crystallographic case is tantamount to determina- 
tion of the space group) is the primary aim of this 
paper. 

Consider, as an example of a macroscopic transla- 
tionally invariant quantity, 

p ( k l ) p ( k 2 ) . . . p ( k m ) 6 ( k ~ + k 2 + . . . + k m ) .  (2.2) 

Since by definition of the point group such products 
must be equal when related by point-group sym- 
metries, we must have 

p(k , )p(k2)  . . . p(km)= p(gk~)p(gk2)  . . . g(gkm) 

whenever k l + k 2 + . . . + k m = 0 ,  (2.3) 

for each element g of the point group G, and all wave 
vectors k ~ , . . . ,  km in the diffraction pattern D. 

The equations (2.3) place constraints on the relative 
phases of the Fourier amplitudes of symmetry-related 
wave vectors. We can specify these phase relation- 
ships by defining for each g in the point group G 
and all k in the diffraction pattern D the phase function 
t~g(k)" 

p(gk) =exp  [2rri~g(k)]p(k).  (2.4) 

The phase function ~g gives the relative phases of 
p(gk) and p(k). It is real and defined only to within 
an integer. 

In terms of the phase functions, the constraint 
equation (2.3) becomes 

• g(k,) + ~ g ( k 2 ) + . . .  + q b g ( k m ) ~  0 

whenever k ~ + k 2 + . . . + k m = 0 ,  k ~ D ,  (2.5) 

where - denotes equality to within an integer, i.e. 
modulo one. 

\ / I 
\ / I 

• • • ] • 

\ I \ / 

. . . . .  % - _ ° _ _  • ~ • 

/ \ / \ 
/ \ 

/ \ I 

3 m l  31m 

Fig. 1. The two possible orientations of the point group 3m relative 
to the shortest vectors of a sixfold symmetric reciprocal lattice. 
The solid circles indicate the shortest vectors; dashed lines 
denote mirror lines. 
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A further constraint on the phase functions follows 
from noting that for g and h in G, the phase functions 
for group elements g, h, and gh are interrelated by 
the group condition 

p[ (gh )k] = p[g( hk) ]. (2.6) 

Application of (2.4) to both sides of (2.6) gives 

exp [2"n'i~gh(k)]p(k) 
= exp [27ri~g(hk)]p(hk) 

=exp {27ri[ ~g(hk)+ Clgh(k)]}p(k), (2.7) 

which gives the group compatibility conditions 

~gh(k)-- ~g(hk) + qbh (k). (2.8) 

The equations (2.5) and (2.8) contain all informa- 
tion about the phase relations of the Fourier transform 
required by the point-group symmetry of the material. 
Although these conditions have been derived only 
for wave vectors appearing in the diffraction pattern, 
we shall see (§ 2.E) that they can be easily extended 
to the entire lattice. We shall describe procedures for 
finding the physically distinct solutions to (2.5) and 
(2.8) for a given lattice L and point group G. 

D. Equivalent solutions: gauge functions 

Two sets of phase functions are equivalent if they 
describe two densities that give identical values to all 
translationally invariant macroscopic quantities (2.2). 
It is our aim to determine the classes of inequivalent 
phase functions ~g(k) satisfying the linearity condi- 
tion (2.5) and the group condition (2.8). In the crys- 
tallographic case these classes of solutions for a given 
point group G and lattice L are precisely the crystallo- 
graphic space groups associated with L and G. We 
therefore regard the classes of solutions in the quasi- 
crystallographic case as specifying the quasicrystallo- 
graphic space groups. In agreement with conventional 
crystallographic nomenclature, we define a symmor- 
phic space group to be a solution equivalent to the 
trivial phase functions q0g(k)-0 for all g in G and 
all k in L. 

Two densities related by 

p'(k) =exp [2rrix(k)]p(k) (2.9) 

will give the same value for all quantities of the form 
(2.2) if and only if the difference in phase satisfies 
the condition 

x(kl) + x(k2) + . . .  + x(km) - 0 

whenever k l + . . . + k m = 0 ,  k ~ D .  (2.10) 

We call such a function x(k) a gauge function (in 
analogy with gauge transformations in electrody- 
namics) because no macroscopic physical properties 
depend on X. The simplest (and in the crystallographic 
case the only) example of a gauge function is 
27rx(k) = k.  r. In this case the two densities p and p' 

are related simply by a translation through r. In the 
quasicrystalline case gauge functions can contain 
'phason' as well as translational shifts (Bak, 1985a; 
Levine, Lubensky, Ostlund, Ramaswamy, Steinhardt 
& Toner, 1985), but this distinction is of no relevance 
to the analysis that follows, which relies only on the 
condition (2.10). 

If ~g(k) and qO~(k) are equivalent phase functions, 
then we have 

p(gk) = exp [2,rriqbg(k)]p(k), 
(2.11) 

p'(gk) = exp [2-triqb~(k)]p'(k). 

The second equation can be rewritten as 

exp [27rix(gk)]p(gk) 

=exp[2~i~g(k)]exp[27rix(k)]p(k). (2.12) 

Hence two sets of phase functions ~g and qbg are 
equivalent if and only if there is a gauge function X, 
independent of the group element g, such that 

• 'g(k)-dPg(k)-x(gk)-x(k)  (2.13) 

for all wave vectors k in the diffraction pattern D and 
all elements g in the point group G. 

We shall establish the equivalence of various phase 
functions by explicitly constructing the gauge func- 
tions which relate them. A gauge-invariant analysis 
will be presented elsewhere in the context of a dis- 
cussion of three-dimensional space groups (Wright, 
Rokhsar & Mermin, in preparation). We shall, 
however, use below the fact that if a wave vector k 
is invariant under an operation g of the point group, 
g k = k ,  then t:~g(k) is gauge invariant. This follows 
immediately from (2.13). 

E. Extension of the phase conditions to the reciprocal 
lattice: extinction rules 

Even though the phase functions are only defined 
on the diffraction pattern D, the reciprocal lattice 
L - - t h e  set of all sums of vectors in D - - p l a y s  an 
important role in the determination of those phase 
functions. This is because any function ~ (k) defined 
for vectors in the diffraction pattern and satisfying a 
linearity condition like the conditions (2.5) or (2.10) 
obeyed by the phase functions or gauge functions can 
be uniquely extended from a linear function on the 
diffraction pattern D to a linear function on the entire 
reciprocal lattice L. (Since the phase functions are 
only defined to within an integer, by 'linear' we shall 
always mean 'linear modulo one'.) 

To make this extension note first that if k is in D 
then so is - k .  Since k and - k  sum to zero, the linearity 
condition gives 

~ ( -k ) - - -  - aF(k). (2.14) 

Note next that any k in the lattice L(D) is of the form 

k = k l + k 2 + . . . + k i n ,  (2.15) 
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where k ~ , . . . ,  k,, are all in the diffraction pattern D. 
Given such an expression for k we define qt(k) for 
vectors k that are in the lattice but not in the diffrac- 
tion pattern by 

qr(k)-- qt(kl) + q t ( k 2 ) + . . . +  ~(k, , ) .  (2.16) 

Evidently this definition will give a unique linear 
extension of ~ from the diffraction pattern to the 
entire lattice, provided the value of ~ (k )  does not 
depend on the particular way (2.15) in which k is 
represented as a sum of vectors in the diffraction 
pattern. But if k'~ + . . . +  k',, also gives k, then 

k l + k 2 + . . . + k m - k ' ~ - k ~ - . . . - k ' , = O .  (2.17) 

Independence of representation follows from the fact 
that every vector in (2.17) is in D, the fact that qz 
acting on vectors in D satisfies a linearity condition 
of the form (2.10), and the relation (2.14). 

Thus the phase functions qbg(k) and gauge func- 
tions x(k) have unique linear extensions to the entire 
lattice L. Since the pertinent conditions (2.5), (2.8), 
(2.10) and (2.13) are all linear relations among linear 
functions of k, we can apply those conditions to the 
entire lattice of wave vectors, even though as 
originally defined the functions q~g(k) and x(k) only 
have meaning for wave vectors in the diffraction 
pattern D. From now on we therefore assume that 
the phase functions and gauge functions are defined 
on the entire lattice L. 

Note that because of the linearity of X on the lattice 
we can write the condition (2.13) for the equivalence 
of two sets of phase functions as 

q)~(k) - q:'g(k) = X[ (g - 1)k], (2.18) 

for all k in the reciprocal lattice L(D) and all g in 
the point group G. 

We can now specify the source of systematic extinc- 
tions. If a vector k in the diffraction pattern D is 
invariant under a point-group operation g, then 

p ( g k ) = p ( k ) .  (2.19) 

The definition (2.4) of the phase function then implies 
that 

¢,~(k)- 0, (2.20) 

since vectors in the diffraction pattern have non-zero 
p(k). Thus if a family of phase functions on the lattice 
contains some with q0g(k)~ 0 for a point-group ele- 
ment g and a wave vector k satisfying gk = k, then 
such wave vectors, though present in the lattice L, 
are forbidden by symmetry from appearing in the 
diffraction pattern D. This is the source of systematic 
extinctions. It is evident from (2.18) that this condi- 
tion for systematic extinctions is gauge invariant. 

F. Quasiperiodic vs incommensurate crystals: 
the condition of  minimum rank 

Thus far we have not placed any limitations on the 
complexity of the diffraction patterns and associated 
lattices that we are willing to consider, beyond the 
assumption that the diffraction pattern consists of 
well defined Bragg-like peaks. We now impose a 
further restriction on the diffraction patterns which 
limits the class of lattices we will consider below. 

By the rank v of a lattice L, we mean the smallest 
number of vectors b ~ , . . . ,  b~ that can generate L over 
the integers, in the sense that every vector in L is a 
linear combination of the bj with integral coefficients. 
We shall call such a set of vectors b i , . . . , b ~  an 
integrally independent basis for L. 

For any point group G we define the indexing 
dimension of G to be the smallest rank that a lattice 
invariant under G can have. The crystallographic 
point groups are those with indexing dimension equal 
to the dimension of physical space; non-crystallo- 
graphic point groups have indexing dimensions larger 
than the spatial dimension. We shall say that a lattice 
is crystallographic or quasicrystallographic if its rank 
is equal to the indexing dimension of its point group. 

We develop a classification scheme only for crys- 
tallographic and quasicrystallographic lattices. A lat- 
tice with non-minimal rank can be viewed as the 
direct sum (i.e. the set of all sums of pairs of vectors, 
one from each lattice) of two or more lattices of 
minimal rank. In the crystallographic case such a 
direct sum is not viewed as a crystallographic lattice, 
but as a set of points appropriate for characterizing 
an incommensurately modulated structure. We 
impose the same organizing principle in the quasi- 
crystallographic case, reserving the term 'quasicrystal' 
for structures whose lattices have minimal rank, and 
regarding more complicated structures as incom- 
mensurately modulated quasicrystals, which are most 
simply regarded as direct sums of ordinary ones. 

Hereafter when we use the term 'lattice' we shall 
always mean crystallographic or quasicrystallo- 
graphic lattices. 

3. Two-dimensional lattices and cyclotomic integers 

We now introduce some techniques that are special 
to the case of two dimensions. We shall be interested 
in quasicrystallographic patterns which have greater 
than sixfold symmetry, but our analysis will also 
include the crystallographic cases of four- and sixfold 
symmetry. (The crystallographic case of twofold sym- 
metry is exceptional. Only in this case are there sym- 
metry-preserving distortions of a two-dimensional 
lattice more general than isotropic changes of scale. 
Although this makes it in some respects the most 
complicated case it is, of course, entirely understood, 
and will not be considered here.) 
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A. The standard lattices 

Consider a two-dimensional lattice with N-fold 
rotational symmetry (an N-lattice). If it contains a 
vector bo and r is a rotation through 2.a-~N, then 
rotational symmetry requires it to contain all the N 
vectors 

bj = rJbo (3.1) 

given by rotating b0 through 2~'j/N, j = 0 , . . . ,  N - 1. 
By the standard lattice we mean the set of all integral 
linear combinations of these N vectors. By construc- 
tion it has N-fold rotational symmetry. We refer to 
the vectors bs, j = 0 , . . . ,  N - 1 as symmetric generating 
vectors or as constituting a symmetric basis for the 
standard lattice. A symmetric basis is never integrally 
independent (since, among other relations, we have 
b0+ b~ + . . .  + bN-~ = 0). Evidently any lattice with N- 
fold symmetry contains standard sublattices gener- 
ated by any vector in the lattice and its rotations. 
Thus the rank of any N-lattice is at least the rank of 
the standard N-lattice, and therefore the indexing 
dimension for two-dimensional point groups with 
N-fold rotational symmetry is just the rank of the 
standard N-lattice. It is also easily shown that any 
lattice with N-fold symmetry, when properly scaled, 
is itself a sublattice of the standard lattice (Rokhsar, 
Mermin & Wright, 1987). 

We say that two N-lattices are equivalent if they 
differ only by a scale factor and/or  a rotation. It is 
a deep* theorem of algebraic number theory that for 
all even integers 2 < N < 4 6 ,  any N-lattice is 
equivalent to the standarcl N-lattice (Mermin, 
Rokhsar & Wright, 1987). For given N --- 46 the num- 
ber of inequivalent N-lattices is finite, but grows 
roughly exponentially with increasing N. (The 
excluded case N - - 2  is pathological in that the 
definition of the standard lattice only yields a one- 
dimensional set of points.) 

In this paper we shall only give a complete analysis 
of the simplest possible case: those space groups 
associated with diffraction patterns that give rise to 
standard lattices. We are nevertheless thereby giving 
the complete analysis of two-dimensional quasicrys- 
tallographic space groups for all lattices with N < 46 
(and for N- -48 ,  50, 54, 60, 66, 70, 84 and 9 0 - - t h e  
only other cases in which all lattices are equivalent 
to the standard one) (Mermin, Rokhsar & Wright, 
1987). 

Since N is even and since standard lattices have 
mirrorings, the standard lattice belongs to the 
holohedry Nmm. It is a surprising fact that for certain 

* We shall need on occasion to appeal to non-trivial results from 
the mathematics literature. In making such references we distin- 
guish between results the proofs of which are relatively straightfor- 
ward, but too lengthy to reproduce here, and results that are truly 
profound, requiring entire monographs for their derivation. The 
latter results we shall characterize as 'deep'. 

N > 2 there exist lattices without mirror symmetry. 
For example, when N = 46 there is an enantiomorphic 
pair of distinct non-standard lattices belonging to the 
holohedry N (Mermin, Rokhsar & Wright, 1987). In 
the rest of the paper we restrict our attention to 
standard lattices, though we shall call attention to 
those restdts that are more generally valid, as they 
emerge. 

B. Standard lattices and cyclotomic integers 

It is useful in understanding the properties of two- 
dimensional lattices and diffraction patterns (and 
essential if one wishes to extract pertinent information 
from the mathematics literature) to regard the two- 
dimensional wave vectors constituting such a lattice 
or diffraction pattern as points in the complex plane. 
A set of symmetric generating vectors [equation (3.1)] 
can be taken to be given by the Nth roots of unity, 

bj ~exp  (2"rcij/ N )=  ~ ,  ~N =exp 2"n'i/ N, 

j = 0 ,  . . . ,  N -  1. (3.2) 

The standard N-lattice is simply the set ZN of all 
integral linear combinations of the Nth  roots of 
unity. This set is known as the cyclotomic integers of 
degree N. 

From this point onward we shall find it convenient 
to abandon the geometric notation that uses vectors, 
and change to an algebraic notation that uses the 
complex numbers that represent those vectors in two 
dimensions. The algebraic notation is virtually indis- 
pensable in deriving the categories of lattices and 
space groups, and is more efficient for deriving inter- 
mediate results. 

Two minor but important points arise. 
(1) When N is odd, the cyclotomic integers of 

degree N are identical to the cyclotomic integers of 
degree 2N. [This is because the set of all 2Nth  roots 
of unity (for odd N) is just the set containing the 
Nth roots and their negatives. But _~r%, as a trivial 
integral linear combination of the st%, is already in 
ZN.] In the mathematics literature the cyclotomic 
integers of odd degree N are always described as ZN 
and the alternative name Z2N is rarely used. We, 
however, wish to label the standard lattices by their 
rotational symmetry, which is always of even order. 
We therefore depart from the mathematical usage, 
using Z2N for the cyclotomic integers of odd degree 
N. Since Z2N is identical to ZN this deviation 
from mathematical orthodoxy cannot lead to any 
ambiguity. 

(2) The mapping of the standard N-lattice onto 
the cyclotomic integers of degree N reveals that the 
indexing dimension of quasicrystallographic diffrac- 
tion patterns with N-fold symmetry (i.e. the rank of 
the standard N-lattice) is just the number of Nth  
roots of unity that are linearly independent over the 
integers. The particular value of this number does not 
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Table 2. Point groups with n-fold symmetry compatible 
with lattices o f  N-fold symmetry 

When the rotat ional  symmetry  n of  the point  group G is even, 
then the rotat ional  symmetry N of  the lattice is equal to n. The 
two point  groups with even n and their  generators are listed. When 
n is odd then N = 2n. There are again two point groups,  but  one 
o f  them, nm, can act on the complex numbers in two different 
ways, as indicated by the list o f  generators.  As discussed in the 
text, the two ways in which nm acts on the lattice are only distin- 
guishable when n is a power  o f  an odd prime number.  

n 

n e v e n  

Point group Generators  Lattice 

n m m  ~ :~t~: ct--> ~,,a Z,, 
ot -~ ot * 

nml ~ rr~i ct o ~,a z2, , 

n l m  f r ot "-~ ~nO~ Z2n 
/m o~ --~ -o~* 

n r: a ~ , , a  Z2 .  

n odd 

play a major role in the analysis that follows. It is 
known as the Euler number of N, commonly denoted 
~(N).  An easy way to compute ~ (N)  is to list all 
the primes P~,P2 , . . . tha t  divide N; ~ (N)  is then 
simply given by 

\ Pl / \  P2 / 

Thus 12 has prime factors 2 and 3, so ~(12)= 
1 2 ~x~x 12=4 (primes that appear several times are 
counted only once).t 

C. The action of  point groups on standard lattices 

The action of a two-dimensional point group on a 
set of cyclotomic integers can be conveniently rep- 
resented in terms of familiar operations on the com- 
plex plane. Thus a rotation by 27r/n corresponds to 
multiplication by ~',, mirroring in the real axis corre- 
sponds to complex conjugation, and mirroring in the 
imaginary axis corresponds to complex conjugation 
followed by inversion (multiplication by -1) .  Table 
2 lists the two-dimensional point groups G and their 
actions on cyclotomic integers. 

The table displays the two ways in which mirror 
operations can be oriented with respect to the 
reciprocal lattice when n is odd (Fig. 1): 

(1) In the case of nml  there are n mirror lines 
(one of which is the real axis) each of which contains 
a pair of (2n)th roots of unity. In this case we define 
the operation m to be the mirror operation of complex 
conjugation (or mirroring in the real axis): 

ma = o~* (n odd, G = nml) .  (3.3) 

5 The Euler  number  is also the number  of  integers less than N 
(including unity) that have no prime factors in c omm on  with N 
(Hardy  & Wright,  1954). 

(2) In the case of n lm there are n mirror lines 
(one of which is the imaginary axis) which bisect the 
angles between neighboring (2n)th roots of unity [and 
therefore none of which contain (2n)th roots of 
unity]. In this case we define m to be a mirroring in 
the imaginary axis: 

ma = - a *  (n odd, G = n lm) .  (3.4) 

When n is even the presence of either mirror (3.3) 
or (3.4) implies the presence of the other, so there is 
only a single improper point group, nmm. 

In the crystallographic case of odd n (which occurs 
only for N - - 6 ,  n = 3) the two distinct subgroups of 
the symmetry group GL of Z6 give rise to two distinct 
space groups (p3ml and p31m). One'can distinguish 
the two possibilities in this case by checking whether 
the reciprocal-lattice vectors of minimum length do 
or do not lie on mirror lines. (Note that in the crys- 
tallographic case 3ml is the point group for which 
real-space symmetric basis vectors are not invariant 
under the mirroring, and therefore for which the 
reciprocal-lattice symmetric basis vectors are 
invariant.) 

In generalizing the relationship beteen nml and 
n lm to the quasicrystallographic case one must be 
careful, since there is no unique symmetric basis. We 
show in the next subsection (§ 3.D) that unless the 
odd integer n is a power of a prime number, these 
two ways of orienting the point group nm relative to 
the lattice Z2, are in fact indistinguishable. 

D. Scale invariance of  standard lattices and 
cyclotomic units 

A symmetric basis for the standard N-lattice ZN 
is simply given by the Nth roots of unity, ~'~, j - -  
I , . . . ,  N. For the crystallographic cases N --4 or 6, 
this symmetric basis is unique. For the non-crystallo- 
graphic cases N =8, 1 0 , . . . ,  the scale of the sym- 
metric generating vectors may be altered without 
changing the lattice, reflecting an invariance of the 
entire quasicrystallographic lattice under such a 
change. This freedom to choose the scale of the sym- 
metric generating vectors plays an important role in 
the classification of the quasicrystallographic space 
groups. The extent of the scale invariance is very 
simply characterized when the lattice is expressed in 
terms of the cyclotomic integers. 

Any symmetric basis other than the Nth roots of 
unity can be viewed as consisting of a cyclotomic 
integer/x and its rotations sr%/x, or, equivalently, as 
the Nth roots of unity rescaled by ]P-I and rotated by 
the phase of/z. If this second set is indeed a basis, 
then its integral linear combinations must give all the 
cyclotomic integers. In particular, there must be 
integers m r such that the cyclotomic integer 1 is given 
by N-1 N-1 

1= ~ mj(sr~p.)=/x E m j ~ .  (3.5) 
j = O  j = 0  



D. S. ROKHSAR, D. C. WRIGHT AND N. D. M E R M I N  205 

Thus the cyclotomic integer /z has a multiplicative 
inverse among the cyclotomic integers: /zh = 1, with 

N-1 

,X= Y~ miffS. (3.6) 
j=0 

A cyclotomic integer whose inverse is also a cyclo- 
tomic integer is called a unit. 

We have thus established that any symmetric basis 
for the cyclotomic integers is nothing but the Nth  
roots of unity, rescaled by a unit. The converse is also 
true: rescaling the Nth  roots of unity by a unit h 
yields a symmetric basis. Let /z be the cyclotomic 
integer with /z)t = 1. If a is any cyclotomic integer, 
then /xa  is a cyclotomic integer and therefore has an 
expansion as an integral linear combination of the 
Nth  roots of unity, 

N-1 
tzce= ~, m j ~ .  (3.7) 

j=0  

Multiplying this by A we have 

N--1 /~-1 

o~ = X E miffS= E mj(~%X ), (3.8) 
j=0 j=0 

which explicitly gives o~ as an integral linear combina- 
tion of ;t and its rotations. 

When N = 4 or 6 it is easy to show that the only 
cyclotomic units are the Nth  roots of unity, but for 
all greater values of N there are cyclotomic units with 
magnitudes different from unity. Since positive and 
negative powers of units are also units,* there will 
then be units of arbitrarily large and small magni- 
tudes. The question of the magnitudes of the units in 
the cyclotomic integers of general degree N is a very 
difficult one, but the possible phases of units are 
completely understood (Washington, 1982).¢ 

(A) If½N is a prime power [i.e. ½ N = p  s for some 
prime number p (including 2)] then all the units of 
ZN lie on rays in the complex plane passing through 
the Nth  roots of unity. Therefore all symmetric bases 
of ZN are related by a (real) scale factor. Thus, when 
n is a power of an odd prime, the two subgroups nm 1 
and n 1 m of GL lead to distinguishable actions on the 
lattice Z2n. (The issue does not arise when n is a 
power of 2.) 

(B) If ½N is not a prime power, then the units lie 
either on the rays passing through the Nth  roots of 
unity, or on a second set of rays that bisect the angles 
between adjacent rays in the first set. (The second set 
of units has a different scale from the first; in par- 
ticular, unlike the first, which contains the Nth  roots 
of unity, the second contains no points on the unit 

* This follows directly from the definition of units: if a f t  = 1 

then 1 = ( e~fl ) j = a J f l  j. 
t We refer the reader to Washington's book for the (non-deep 

but non-trivial) proofs of the assertions that follow. See Corollary 
4.13, page 34 (the meaning of  which non-experts can deduce from 
the last line of  the statement of Theorem 4.12, page 34). 

circle.) Thus when ½N is not a prime power there is 
a second family of symmetric bases along directions 
rotated from those in the first set by ½(27r/N) = 7r/N. 
In this case it is impossible to distinguish the two 
types of mirror lines: whether the symmetric basis 
vectors lie on or between the mirror lines depends on 
how one chooses to pick those vectors: rotating the 
lattice ZN by 2 7 r / 2 N  simply gives a scaled version 
of the (unrotated) lattice ZN. 

As a consequence of this it is only pertinent to 
distinguish between nm I and n 1 m when n is a power 
of an odd prime number; for other odd n there is 
only the single case rim. 

4. Quasicrystallographic space groups in two 
dimensions for the standard lattices 

In this section we construct all the two-dimensional 
quasicrystallographic space groups for standard lat- 
tices. The procedure is as follows. 

The elements of various two-dimensional point 
groups are either all powers of the rotation r (a proper 
point group) or products of powers of r and powers 
of the mirror m (an improper point group). Thus a 
specification of qb for proper point groups, or q~, and 
qbm for improper point groups, completely determines 
the corresponding space groups since the phase func- 
tions for all other point-group elements can be con- 
structed in terms of these two by use of (2.8). 

In § 4.A we prove that for any two-dimensional 
point group, a gauge can always be found in which 
the rotation phase function q~, is equal to zero. This 
completely solves the phase-function problem for all 
proper two-dimensional point groups. For such point 
groups all phase functions can be chosen to vanish; 
the only possible space group is the symmorphic one, 
pn. The solution does not require the lattice to be the 
standard lattice Z/v, so for any proper point group 
and any compatible lattice the only space group is 
the symmorphic one. 

The non-trivial part of the two dimensional prob- 
lem arises when the point group is improper. This is 
dealt with in §§ 4 . B - E .  

Section 4.B derives some preliminary results. We 
show that in the gauge in which the rotation phase 
function @r vanishes, the group conditions on the 
mirror phase function @,~ reduce to two simple condi- 
tions [equations (4.12) below]. We also state and 
prove two elementary lemmas that are useful in the 
sections that follow, which divide into cases depend- 
ing on whether n is or is not a prime power. 

In § 4.C we prove that when the rotational order 
n of G is not a prime power, then in any gauge giving 
@r ------ 0, we must also have @,, - 0. This result is easily 
established in a manner that is independent of 
whether or not the lattice is standard. Because there 
is only one way of orienting the point group relative 
to the standard lattice when n is not a prime power 
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Table 3. Two-dimensional space groups for  the stan- 
dard lattices 

The space groups for the standard lattices are classified by the 
rotational symmetry n of their point groups, which is subdivided 
into two cases (n even and n odd). Rows with additional entries 
in the first column are restricted to the cases specified by those 
entries (p is any odd prime). The last two columns give the values 
of the phase functions q0 r and (when mirrorings are present) ~, ,  
on the symmetric basis vectors using the gauge functions developed 
in the text. (Note, however, that the one non-zero entry is gauge 
invariant.) When n is less than 23 these are the only two- 
dimensional quasicrystallographic space groups, since when N is 
less than 46 there are no non-standard lattices. 

Point Space 
group Lattice group @(~'~,) qb (~'~) 

n even n 7..  pn  0 - -  

n rnm Z,, pnrnrn 0 0 
n = 2 5 n m m  Z .  p n g m  0 t 

n odd n Z2,  , pn  0 - -  

n # p~ n m  Z 2,, p n m  0 0 
n = p~ n m  I Z2 ,  , p n m  1 0 0 
n = p 5  n l m  Z2n p n l m  0 0 

(§ 3.D), there is again only the symmorphic space 
group for a given point group with the standard 
lattice, pnmm for the point group nmm, and pnm for 
the point group nm. 

The remaining case of an improper point group of 
rotational order n that is a prime power is dealt with 
in §§ 4.D and E, depending on whether n is odd or 
even. 

Section 4.D establishes that when n is an odd prime 
power, there is enough freedom within the family of 
gauge functions giving (b~-0 to pick one that also 
gives q),,,-0. This result depends in detail on the 
lattice being the standard one. It is straightforwardly 
established for G - - n m l ,  but requires a rather more 
intricate argument for n 1 m. Thus when n is an odd 
prime power, the standard lattice has just two space 
groups, pn 1 m and pnm 1, both of them symmorphic. 

Section 4.E establishes that when n is a power of 
2 there are two inequivalent families of phase func- 
tions. In this case (and only in this case) there are 
non-trivial phase-function solutions to (2.5) and (2.8) 
on the standard lattice. The space groups are the 
symmorphic space group pnmm and the non-symmor- 
phic space group pngm. In the latter case the mirror 
phase function on the symmetric generating set is 
q~m(~)-~. Following the crystallographic nomen- 
clature, we call such a space-group element (reflection 
and an associated gauge-invariant phase change) a 
glide operation. 

These results are summarized in Table 3. The crys- 
tallographic space groups for n equal to 3, 4 or 6 
provide specimens of most of these categories: n = 6 
and n = 4 give the two varieties of even number, and 
n = 3 is an odd prime power. Only when n is odd but 
not a prime power (which first happens for n = 15) 
does something distinctly novel emerge. There is only 
the space group p[ 15]m: the two apparently different 

space groups p[15]m1 and p[1511m are actually 
indistinguishable, because of the non-trivial scale 
invariance of the lattice Zls. 

The reader who is not interested in the mathemati- 
cal details of the derivation of the space groups is 
encouraged to skip ahead to § 5, which shows how 
to construct patterns with a given space-group sym- 
metry and how to obtain the rules for systematic 
extinctions. 

A. The rotation phase function cI9 r 

We show that if the point group G has an n-fold 
axis then we can always pick the gauge X so that the 
phase function ~r of the rotation r through 2rr/n is 
zero. It will then follow by repeated application of 
the group compatibility condition (2.8) that the phase 
function associated with any power of r must be zero. 
Representing rotations r j by multiplication by sr~, we 
construct gauge functions that reduce qb to zero as 
follows. 

Given a phase function ~ ,  we show that it is 
equivalent to zero by defining the gauge function X 
to be 

X ( a ) - -  ~ cr . (4.1) 
n 

It is important to note that since ~ is only defined 
for lattice vectors, if X is to be defined for all lattice 
vectors it is essential that the operation of multiplica- 
tion by n/(1  - ~ , )  takes lattice vectors (i.e. cyclotomic 
integers) into lattice vectors. This is made explicit by 
the following argument, which shows that multiplica- 
tion by n/(1  - ~,) takes any cyclotomic integer a into 
an integral linear combination of itself and its rota- 
tions through multiples of 2rr/n: 

Note first that since every power of s r. is an nth 
root of unity, the polynomial z " -  1 has the factori- 
zation 

Z n - - l = ( z - - 1 ) ( Z - - ~ n ) ( Z - - ~ 2 n ) . . . ( Z - - ~ - l ) .  (4 .2)  

Dividing both sides of (4.2) by z -  1 we have 

z ~ - ~ + z " - 2 + . . . + z +  1 

= ( z - ~ , , ) ( z - ~ 2 , ) . . . ( z - ~ " , - 1 ) .  (4.3) 

Setting z equal to 1 we then have 

n/(1 - st,) = (1 - sr])(1 - st3,,)... (1 - st,"-'). (4.4) 

Since the right-hand side of (4.4) can be multiplied 
out to yield a linear combination of powers of ~r, 
multiplying both sides by a demonstrates that 
n a / ( 1 -  ~,,) is indeed a lattice vector. 

It is important to realize that although ~r is linear 
on the lattice, the n in (4.1) in the argument of qb 
cannot be taken outside to cancel the 1In in front, 
because in general the vector a / ( 1 - ~ , )  will not be 
in the lattice. 
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To see that the gauge function (4.1) does indeed 
reduce qbr(4) to zero, note that in terms of cyclotomic 
integers, the general relation (2.18) between 
equivalent phase functions assumes the form 

A~(a) - -crP '~ (a ) -crP~(a) - -X[ (~ , , -1 )a] .  (4.5) 

When the gauge function X is given by (4.1), this gives 

~ ' r (a  ) -- q~(4) + 1 ~b~ [ (~" - 1) n 1 ---~a(. 1 n 

-- ebb(a)_! ~ ( n a ) = O .  (4.6) 
n 

The last equality follows from the fact that a is in 
the lattice, and therefore we can extract the n from 
within the argument of the linear function q~r. 

Thus within the class of equivalent phase functions 
comprising a given space group, it is always possible 
to choose a gauge function X such that the phase 
function associated with the rotation r satisfies 
qL(~) - 0 for all vectors 4 in the lattice. (This is one 
of the major simplifying featurez of the two- 
dimensional problem; in three dimensions, phase 
functions associated with rotations cannot in general 
be reduced to zero by the proper choice of gauge.) 
Our subsequent analysis will be carried out in such 
a gauge. 

When the point group G is n, there is therefore 
only one space group, which we denote by the symbol 
pn. In deriving this conclusion we nowhere used the 
fact that L was a standard lattice, so this conclusion 
remains more generally valid. If the lattice is non- 
standard the space-group symbol would remain the 
same, except that the 'p '  (for 'primitive') would be 
replaced by a specification of the lattice. 

In discussing the phase functions q~,~ associated 
with mirrorings, we shall find it useful to take advan- 
tage of the freedom that remains in choosing a gauge 
function from among those giving qb - 0. Note, there- 
fore, that if 69 is linear on the lattice and assumes 
values that are integral multiples of l / n ,  then q~ is 
unaffected by a further gauge transformation of the 
form 

since (4.5) gives for the corresponding change in 45~, 

X ' [ ( ~ - l ) o ~ ] - O ( n o ~ ) - n O ( o ~ ) - O .  (4.8) 

Therefore it is enough to find phase functions that 
obey the group compatibility condition (2.8) for both 
of these relations. 

Since the phase function associated with the iden- 
tity e necessarily satisfies q0e(4)--= 0, condition (2.8) 
applied to the first of the relations (4.9) gives 

0 -= q~m2(4) = qb,,, (m4) + ~,,, (a) .  (4.10) 

A further application of (2.8) to the second relation 
(4.9) gives 

¢'m(~)- ¢'r~r(4) 

-- clgr(m(,,a)+ ~, , , ( (n4)+ ~ ( 4 )  

-- ~,,, (~'n4), (4.11) 

since the phase function q~ vanishes. We therefore 
have two conditions on the phase function q~,~" 

• m ( m a ) - - ~ m ( a ) ,  ~ ( ~ ' n a ) -  qb,,,(a), (4.12) 

for arbitrary lattice vectors a. 
Before classifying the distinct solutions of (4.12), 

we first establish two simple but useful results. 
Lemma A. If n is the order of the rotation r, i.e. 

r ~= e, and if the integer a is a proper divisor of n, 
then aclg,,,(a) - 0 for all a. 

This follows from the fact that if n can be factored 
as n - -ab ,  then ~.b is an ath root of unity. Thus, for 
any vector 4, 

~ b ol q- ~ 2 b ol -ff . . . q- ~ a b 4 = o . (4.13) 

Using the linearity of the phase function ~m and the 
second of equations (4.12) (repeatedly), we conclude 
that 

a ~ , , , ( 4 ) - O ,  (4.14) 

as was to be shown. 
Lemma B. If a ~  and bq t are both integers for two 

relatively prime integers a and b, then ~ itself is an 
integer. 

For ~ is then simultaneously c / a  and c ' /b  for 
some integers c and c', so that cb = c'a. But since a 
and b are relatively prime, this is only possible if a 
divides c, and b divides c', which means that ~ is 
an integer. 

As a result of Lemma A, the classification of the 
solutions of (4.12) divides naturally into two cases: 
(1) the order n of r is not a prime power and (2) the 
order n of r is a prime power. 

B. The mirror phase function ~,,, 

The non-trivial part of the two-dimensional prob- 
lem lies in determining the phase function q~,,,(a). It 
is easy to show that for point groups with both a 
rotation r and a mirroring m, the entire multiplication 
table can be constructed out of applications of the 
two relations 

m 2=e,  r m r = m .  (4.9) 

C. The mirror phase function ~,~ when the order n o f  
r is not a prime power 

If the order n of the rotational symmetry of the 
point group G has at least two distinct prime fac- 
tors - -  i.e. if n is not simply a power of a single prime 
n u m b e r - -  then it is easy to establish that phase func- 
tions • ,,, satisfying the second of equations (4.12) 
must be equivalent to zero. 
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If n is not a prime power, then it can be written 
as the product  of  two integers a and b which have 
no common prime factors. Lemma A then requires 
that 

aCrpm(a)- 0 and b d P m ( a ) -  O, (4.15) 

and Lemma B requires q~r,(a) to be an in tege r -  i.e. 
q'm('~)-- 0. 

We can apply  this result to improper  point groups 
G in two cases. 

(1) If n is even and not a prime power, then G is 
the entire point  group n mm of the lattice, G , .  All 
phase functions are equivalent  to the simple choice 
q)r = q~,, = 0, and therefore there is a unique space 
group, which we denote by the space-group symbol 
pnmm. In this case the conclusion that there is a single 
space group with all phase functions equal to zero 
also remains valid even when the lattice is not a 
s tandard lattice. 

(2) If n is odd and not a prime power, then as 
established in § 3.D, even though nm appears as two 
distinct subgroups of the lattice point group [2n]mm,  
the relations of the two subgroups to the lattice are 
interchanged by a simple rescaling.* (This is not the 
case when n is a prime power.) Since all choices of 
the phase functions are equivalent  to the choice q~r = 
~r,, = 0, there is again a unique space group which 
we denote by the symbol  pnm. 

It remains to discuss the case when n is a power 
of a single prime number.  We subdivide this into two 
cases, depending  on whether or not the prime is 2. 

D. The mirror phase funct ion CI9r~ when the order n o f  
r is an odd prime power 

When n is an odd pr ime power (n = pS, p an odd 
prime), then the rank u of  the lattice Z2, (see §§ 2 .F  
and 3.B) is just  

u = ( p - 1 ) p S - l = ( p - 1 ) q ,  (4.16) 

where we have defined 

q _pS-1 (4.17) 

to avoid having to write exponents  within exponents.  
We can take as a set of  integrally independent  generat- 
ing vectors the following u nth roots of unity: 

st°,, ~'1,,..., ~',~-2, sr~ - l  . (4.18) 

This set is indeed a basis. To see this note that since 
~',q is a pth root of  unity, we have 

~.~= ~.?-l)q = - (1  + srq+ ~.2q+. . .+  ~(p-2)q). (4.19) 

This tells us how to express the q vectors, sr~,,... ~'~-' 
in terms of  the vectors (4.18): equation (4.19) directly 

* This is a property of the standard lattice, so our conclusions 
in this case cannot be taken over to non-standard lattices without 
further investigation. 

gives ~',~ as a l inear combinat ion  of the vectors (4.18), 
and the remaining higher powers of srn are given in 
terms of the vectors (4.18) simply by mul t ip lying 
(4.19) successively by ~',, sr2n,..., ~.~-1. The 2n vectors 
x s r ° , . . . ,  ±~'~-~ constitute a symmetric basis for the 
lattice Z2,. 

Since p is a factor of  n Lemma A gives 

pclg ,, ( a ) - O. (4.20) 

We examine the consequences of this in two cases. 
Case 1. G = n m l .  There is then a mirroring in G 

that leaves one of the generating vectors (4.18) fixed.+ 
In this case m leaves ~.o = 1 invariant  [equation (3.3)]. 
The first of  equations (4.12) then requires that 

2 q),,, (~'°) = 0. (4.21) 

Since p ~ 2, in conjunct ion with Lemma B, (4.20) and 
(4.21) require q~,, (~.o) to be an integer, i.e. @m(~ °) -- O. 
The second of equations (4.12) then gives q~,,, (~'J,) - 0 
for all the generating vectors. Since the s tandard 
lattice Z2,, consists of  all integral l inear combinat ions  
of these generating vectors ( including the vectors 
themselves),  the phase functions q~,, can all be taken 
to be zero. 

Therefore for the s tandard lattice Z2, we have the 
unique space group p n m l  when n is a power of an 
odd prime, and the mirrorings in nm leave some units 
fixed. 

Case 2. G = n 1 m. There is then no mirroring in G 
that leaves any of the generating vectors (4.18) fixed. 

Evidently (4.20) will hold for any vector a in the 
lattice if and only if  it holds for the generating vectors 
(4.18).-~ Since the second of equations (4.12) requires 
q~,,(~'J,) to be the same for all the generating vectors 
(to within an additive integer) we must have 

qb ( ~ ) -  c / p  (4.22) 

for some single integer c, independent  of  j. 
We now show that we can use the remaining free- 

dom of choice in the gauge function g [as expressed 
in (4.7)] to make c equal to 0. When X has the general 
form (4.7) consistent with the vanishing of q~r, then 
(2.18) gives 

Aclg, , , (a)=--O)[~n--~_l(m-1)a I , (4.23) 

where 6) is a l inear funct ion on the lattice whose 
values are multiples of  1/n  = 1/p  s. We must show 
that it is possible to choose such a function O so that 

ac lg , , , (~ ) -  - ¢ / p .  (4.24) 

Since the mirroring m takes a into - a *  [equation 
(3.4)], we have ( m -  1)a = - ( a  + a*),  and therefore, 

t Here is a place where we require the standard lattice: it is 
essential for the argument that follows that the symmetric generat- 
ing vectors are themselves in the lattice. 

:~ This again requires the lattice to be standard. 



D. S. ROKHSAR, D. C. WRIGHT AND N. D. MERMIN 209 

in particular, 

A (~m (~J) ~ ~} [ l'~n~n (~J -[- ~nJ) 1. (4.25) 

We first show that a~,,,(~'~) differs from A~r,(~ "°) 
by an integer. It will then be enough to show that 
A~,,,(~ "°) can be made equivalent to - c / p .  The 
linearity of (9 gives 

A ~,. (~'~) - A~.,(~r°) -- O [ l_-~n~ (~r~ + ~'~J- 2) ] .  

(4.26) 

Because the values of 6/are integral multiples of 1/n, 
the right-hand side of (4.26) will indeed be an integer 
provided we can show that (~ '~+~r~J-2)/(1-~r)  is 
in the lattice. But this follows from the identity 

1 - ~',, 1-~r,, 

= ~';J( 1 - ~',,) (1 + ~',, + ~'~ + . . .  + ~.{-,)2, 

(4.27) 

since the right-hand side can be expanded to give an 
integral linear combination of nth roots of unity - -  i.e. 
a lattice vector. 

It therefore remains only to show for any given 
integer c that we can choose a O that gives A~,,(~ "°) = 
- c / p .  In the case j = 0, (4.25) gives 

A~m(~°)=-- O (12P_~S~). (4.28) 

But p / (1 -~ , , )  is a lattice vector. This follows from 
the identity 

p--1 
----P---P - ( l + s r , + ~ r 2 + . . . + ~  rq-l)~_.j~qj, (4.29) 
1 - ~'n j=l 

which is easily verified by multiplying both sides by 
1 -  ~r, noting that a factor of 1 _~r converts the first 
term on the right into 1 -~ ' .  q, carrying out the 
expansion of the resulting polynomial in s rq, and using 
(4.19) to simplify the resulting expression. 

Because p/(1 - ~.) is a lattice vector, we are allowed 
to remove a factor 2p s-~ = 2n/p  from the linear func- 
tion 6/ in (4.28): 

AqSm(~.o)__ 2 n  O [(1 + ~',, + ~.2 + . . . +  ~.~-,) 
P k 

p-I 1 x ~ j~qJ . (4.30) 
j=l 

We can specify the linear function 6/arbitrarily on 
any integrally independent set. We choose it to be 
zero for all vectors in the integrally independent gen- 
erating set (4.18) except ~.o. With the aid of (4.19) 
one can then verify that when the argument of 6/is 
expanded in the integrally independent generating 

vectors (4.18), ~.o occurs with the coefficient 1 - p .  We 
therefore have simply 

A~m(Sr°) --- -- 2--n-n 6/(st°). (4.31) 
P 

But 6/(s r°) is of the form c'/n where c' is any integer. 
Since even integers can be found congruent to any 
integer, modulo the odd prime p, we can pick c' to 
give A~,~(~ "°) = - c / p  for any desired value of the 
integer c. 

Thus qbm (~'°) can be taken to be zero, and therefore 
~,,(~4) can be taken to be zero for any j. Since the 
~q, together constitute a basis the linear phase function 
• ,,, can be taken to be zero everywhere on the lattice. 
We conclude that when n is a power of an odd prime, 
and the mirrorings leave no unit fixed (G = n lm),  we 
have a single space group pn lm. 

F. The mirror phase function c12,,, when the order n of  
r is a power of  2 

When n - -2  s, Lemma A requires that 

2qb , , ( a ) -  0 (4.32) 

for all lattice vectors a. The second of equations (4.12) 
requires ~ , , ( a )  to have the same value on all the 
generating vectors srJ,, and (4.32) requires that value 
to be either 0 or ½. In contrast to the other prime 
power cases, the value ½ cannot be eliminated by a 
further gauge transformation. For when n is even ~.o 
is invariant under the mirroring m (see Table 2), and 
therefore qb,,(~ "°) is gauge invariant, as an immediate 
consequence of (2.18). 

Therefore when n is a power of 2 (and only then) 
there are two distinct choices for the phase functions. 
Setting all phase functions equal to zero gives the 
space group pnmm; setting all the ~r(~'~) equal to 0 
and all the ~,,(~'J,) equal to ½ gives the non-symmor- 
phic space group pngm. 

5. A s imple  quas icrys ta l l ine  pattern with a 
n o n - s y m m o r p h i c  space group 

Non-symmorphic space groups occur only when the 
point group is nmm with n a power of 2, in which 
case ~,,,(sr~)=½. In this section, we consider such 
cases, and construct a pattern with p8gm symmetry. 

As shown in {} 2.E, a lattice vector a invariant under 
a point-group operation g cannot appear in the 
diffraction pattern if Crpg(a) is non-integral. Since a 
rotation in two dimensions leaves only the origin 
fixed, extinctions can only occur for vectors invariant 
under mirror operations. When the lattice is represen- 
ted by the cyclotomic integers Z, the two types of 
mirror operations for even n can be described as (1) 
reflections in a line through the origin and an nth 
root of unity and (2) reflections in a line through the 
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origin passing between two neighboring nth roots of 
unity. 

Consider first the mirroring m which reflects in the 
real axis. The lattice vectors a invariant under m are 
simply those lattice vectors along the real axis: 

o~ = to+ t,{C, + ~'~'} +/:{~':,, + C ~ : } + . . .  

-~-ln/4_l{~n/4-1-~ - ~nn/4+l}, (5.1) 

for arbitrary integers l~ and n =U->8 .  Using the 
linearity of the phase function, we find 

CPr,,(a)-½(lo+21,+212+...+21,/4_~)-½1o, (5.2) 

so that vectors of the form (5.1) with lo odd cannot 
be present in the diffraction pattern. The mirrorings 
in the lines through the other nth roots of unity can 
each be analyzed in the same way. 

Next consider an example of the second type of 
mirroring, m', which reflects in the line between 1 
and st,. In terms of the mirroring m and the rotation 
r, we have m' -- rm. Application of (2.8) with @~(a) -= 
0 gives 

qbm,(a) = ~ , , ( a ) ,  (5.3) 
s o  

• ,,,,(sr~) - ½. (5.4) 

The lattice vectors a in the invariant space of m' are 
along 1 + ~'~ : 

a = 1o{1 +~r}+ I,{~'~"-I-~'2}+... 

+ ln/4_l{~ln-n/4. .~ ~n/4}, (5.5) 

• , I +" ' - -  2C'+C~ - \ ! /  
/ Z~'.~ °_ 

• ~. . /  + 

/ , \ \ 

/ - i ~ + 
l • 

Fig. 2. The Fourier transform of a structure with p8gm space-group 
symmetry. Large solid circles indicate a set of symmetric basis 
vectors for the reciprocal lattice Za; the diffraction peaks corre- 
sponding to these reciprocal-lattice vectors are forbidden by 
symmetry. The 16 reciprocal-lattice vectors 2~ "~ +~"~t all have 
Fourier amplitudes with the same magnitude but with alternating 
sign, as indicated. Mirror lines are denoted by dashed lines. 
Under reflection in any of the eight mirror lines, the phases of 
the Fourier amplitudes for these reciprocal-lattice vectors each 
change by ~'. 

for arbitrary l~, and therefore it follows from (5.4) that 

cI9,,,(a)=--½(21o+21~+...)=0. (5.6) 

Therefore none of the lattice vectors (5.5) are forbid- 
den from appearing in the diffraction pattern. Again, 
the mirrorings through lines between other pairs of 
nth roots can be similarly analyzed, so no vectors 
invariant under the second kind of mirroring are 
forbidden. 

As an illustration of a non-symmorphic non-crys- 
tallographic space group, we construct a pattern with 
the simplest such space group, p8gm. 

Let ~" be the eighth root of unity, ~"--exp (2~-i/8). 
A symmetric generating set is ~.o . . . .  , ~7. We choose 
the Fourier coefficients in the density to vanish 
everywhere except at the 16 lattice vectors 

2srJ+s r~±], j = 0 , . . . , 7 ,  (5.7) 

Fig. 3. The pattern with p8gm symmetry described in § 5. 

Fig. 4. A pattern with p8mm symmetry, differing from that in Fig. 
3 by the phases of the Fourier coefficients. 
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and, of course at the point 0, where the Fourier 
coefficient is the average density P0. 

The space group p8gm has 

t/:',,,(2( ~+ ~'J+')-½, ~r(2~ "j+ ~'J±l) ---- 0. (5.8) 

If we take the Fourier coefficients at the lattice vectors 
(5.7) to be given by 

p(2srJ + srJ±')= ±p, ,  j = 0 , . . . , 7 ,  (5.9) 

where p~ is a constant overall amplitude, then it is 
evident from Fig. 2 and the defining relation (2.4) 
that mirrorings and rotations of (5.9) are indeed 
characterized by the phase functions (5.8). 

The symmetry of the resulting real-space density 
is shown in Fig. 3, by coloring the plane black or 
white depending on the sign of p - p 0 .  To aid the 
reader in deciding to what extent 'quasi-glide lines' 
are present in this pattern, we display in Fig. 4 the 
corresponding symmorphic pattern with p8mm sym- 
metry given by taking all 16 Fourier coefficients in 
(5.9) to have the same sign. 
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Abstract 

A rotation axis vector with magnitude tan (0/2) for 
a rotation angle 0 and a closely related unit vector 
of dimension 4 are used to show that : (i) the quadratic 
residual (weighted sum of squares of coordinate 
differences) that results when one vector set is rotated 
relative to another is a quadratic form of order 4, (ii) 
the stationary values of the residual are given by the 
eigenvalues of a matrix of order 4, (iii) the minimum 
residual is given by the largest eigenvalue, (iv) the 
rotations required to obtain such residuals are 
uniquely defined by the corresponding eigenvectors, 
and (v) the stationary values are related by the 
operations of 222 symmetry. No precautions against 
the generation of improper rotations are required. In 
addition, an equivalent solution based on a scalar 
iteration is presented, together with some relation- 
ships of general interest. 

0108-7673/88/020211-06503.00 

Introduction 

The problem of the optimal superposition of one 
vector set on another by pure rotation arises notably 
in the comparison of parts of related protein 
molecules, and its solution has attracted the attention 
of a number of writers, notably McLachlan (1972, 
1979, 1982), Kabsch (1976, 1978), Diamond (1976) 
and Lesk (1986). 

McLachlan's earlier method is iterative and 
analogous to rotating one vector set about the axis 
of the prevailing couple to reduce that couple to zero, 
when the couple is supposed to be the sum of the 
moments arising from forces along the lines separat- 
ing equivalent points in the two vector sets having 
magnitudes proportional to those separations. His 
later method is an eigenvalue/vector method using a 
symmetric matrix of order 6. Kabsch's method is an 
eigenvalue/vector method based on matrices of order 
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